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Volume integration of fractal distribution networks
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An approach based on integral calculus methods is developed in order to determine the volume of a
distribution network with fractal characteristics. This approach introduces alternative useful techniques and
concepts to the study of the self-similarity of fractal distribution networks. The application to the allometry of
organs reveals other possible scaling for the bronchial tree and the kidney arterial tree of mammals.
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I. INTRODUCTION

The work of Westet al. @1–3# made the connection be
tween fractal networks and many allometric scaling laws
organisms. Turcotteet al. @4# proposed the theory o
Tokunaga@4# to be a better model of fractal branching
distribution networks. A key aspect of these models is
evaluation of the network volume based on particular defi
tions of network branching that restrict possible applicatio
to a few organ networks of mammals. Recently, vario
modifications to these previous models have been sugge
by Doddset al. @5# and Gutierrez@6#.

A set of experimentally accepted and simple characte
tics of distribution networks of organs@6,7# is part of the
basis of this approach to the network volume. Starting from
proposed general formula and using a method of succes
approximations, the volume of the network is calculated a
lytically in terms of various geometric functions representi
some of the morphology of the network. The resulting n
work volume in the first order of approximation is used
develop a model of the scaling of the network volume t
can be applied to organisms. A theoretical goal of the in
gration method is to describe distribution networks us
mathematical concepts that overcome the restrictive and
iting self-similarity concepts so far used@1–4#. With this
method, no particular branching patterns are needed to d
mine the volume of the network, branching patterns tha
natural networks are usually much more complicated t
simple fractals. A key analytic concept is the subdivision
the network volume into tiny filament volumes~Fig. 1!. The
description of the filaments requires the introduction of va
ous functions and parameters that also describe a ge
type of fractal network. In this analysis, the circulation d
tance function (XS) plays a significant role, a function tha
should prove quite useful in the measurements of many ty
of natural distribution networks. The integration method
lows the introduction of optimization considerations, diffe
ent from those so far implemented in existing models@1–5#
such as, for example, the optimization of the circulation d
tance. A more complete account of the relation of the in
gration method to optimization conditions is beyond t
goals of this article, but a useful example of a simple op
mization consideration is carried out for the long range c
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culation distance in the discussion of the model’s applicat
to the lung and kidney~Sec. III!. A notable outcome of this
application is the fact that Euclidean exponents~1/3 or its
multiples! can coexist with ‘‘remarkable’’ exponents~such as
1/4 or its multiples! for the same volume quantity. This resu
helps to remove a prevalent theoretical dichotomy betw
these two types of exponents that has been a persisten
troubling feature in most of the existing models of allome
@1,2,3,7#. As a more unifying fractal feature of the networ
the concept of global self-similarity is introduced, which pr
vides for a model that is in principle applicable to any org
network. Although more data than currently available a
needed to further test the concepts here presented, the e
ing relevant allometric data of organs lend preliminary su
port to the proposed model~Tables I and II!. Concurrently,
the proposed model also yields other insights into what t
of data correlations would be of immediate benefit to inv
tigate ~Sec. III!.

II. INTEGRATION OF NETWORK VOLUME

An organ is represented by a volumeV. A large portion of
V ~'80% or more!, namedVTS, is subdivided by a large

FIG. 1. Schematics of volumeV showing the main variables
The illustrated black filament has a volumeVf and a lengthXS(r ).
The total volume of all filaments isVnet.
©2002 The American Physical Society06-1
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WALTON R. GUTIERREZ PHYSICAL REVIEW E66, 041906 ~2002!
numberNs of very small and equal sites, each with a volum
V1S , that is, VTS/Ns5V1S . These sites are serviced by
distribution network of volumeVnet. There may be severa
networks in a particular organ. For example, in the lung th
are the arterial and the bronchial networks. To simplify, b
without loss of generality, we shall assume there is one
work in the organ volume,

V5Vnet1VTS. ~1!

For example,V can represent the kidney volume andNs
the number of nephrons in the kidney~human kidney,Ns
'106). The average volume of one nephron isV1S and
VTS5NsV1S is the volume of all nephrons.Vnet may be the
volume of the arterial network supplying the nephrons@6#. A
useful concept is the density of the distribution of sitesDS
which, being nearly uniform, can be defined as

DS5Ns /VTS5C0Ns /V, ~2!

whereV5C0VTS. SinceVTS is a large part ofV, it is as-
sumed to be proportional toV, which is supported by allo-
metric data@7#.

The main goal of this section is to describe and quan
the volume of a distribution network that looks like a hig

TABLE I. Determination ofb asA0}Vb}MB
cb . A0 , cross sec-

tion area;V, organ volume;MB , body mass; ND, no data.

A0 cba ca b

Mammals
Trachea 0.78 1.06~lung! 0.78/1.0650.74

Renal artery 0.61 0.85~kidney! 0.61/0.8550.72
Birds

Trachea 0.70 0.97~lung! 0.70/0.9750.72
Renal artery NDb 0.91 ~kidney! ND

averageb50.73

aFrom @7#, Tables 3-4, 5-3, and 5-6.
bIf b50.73 is constant, then this exponent can be predicted to
0.66.

TABLE II. Scaling of network volume (Vnet). Vnet}MB
cw

5MB
1.06c5MB

expt; w5b11/3. ND, no data. See Table I for initia
data.

Network
description

Previous
model

@1#

Observed
~expt!

Model proposed
1.06c

Mammals
Bronchial 1.0 1.06–1.18a 1.12
Kidney arterial ND ND 0.90

Birds
Bronchial ND 0.97–1.09a 1.03
Kidney arterial ND ND 0.96

aDue to the lack of experimental data onVnet, the observed scaling
of bronchial tree volume is estimated to be between lung volu
~low value! and trachea volume~high value! @7#.
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order fractal, that is centrally supplied or drained, and t
services a complete volume through the sites. In the desc
tions of fractal distribution networks given below, the fo
lowing hypothesis is made: if all parameters and functio
are specified, the resulting network describes a statistical
erage of a large ensemble of networks, rather than a si
network, consistent with a set of design constraints. T
interpretation is supported by numerical simulations of n
work designs@8,3# and by network error tolerance conside
ations @9#. Next, a general construction of the integratio
method is shown, followed by a method of successive
proximations for the relevant functions. If each site volum
V1S is equally supplied, then a filament volumeVf is defined
by linking an areaA0 /Ns of the initial branch cross section
to the cross section areaAs connected toV1S ~Fig. 1!. For
example,A0 can be the cross section area of the renal art
andAs the cross section area of the arteriole feeding a ne
ron. The filament volumeVf is not an element of volume o
the moving fluid, but an abstract way of subdividingVnet.
The cross section area ofVf is in general a variable function
represented byA(X). The variableX is the partial length of
theVf volume, in the range of 0<X<XS(r ), whereXS is the
total length ofVf , which in turn depends on the spatial lo
cation of V1S specified by the position vectorr
5(r x ,r y ,r z). The functionXS(r ) is known as the circulation
distance. The volumeVf of this abstract filament is

Vf~r !5E
0

XS~r !

A~X!dX, A~0!5A0 /Ns , A~XS!5As .

~3!

Therefore the volume of the distribution networkVnet is

Vnet5(
1

Ns

Vf~r i !5E
V
Vf~r !DS~r !dV. ~4!

A key step is the substitution of the summation of all t
filament volumesVf(r ) by an integral using the general de
sity DS(r ) of the sites which, in the case of a constant de
sity, is given by Eq.~2!. In the case of a general density w
would have*VDS(r )dV5Ns . Clearly a uniform constan
density DS throughoutV is only an approximation, since
there are no sites in the space occupied byVnet. This ap-
proximation would introduce a small error, since the netwo
volume is a small part of the total volume. This error may
corrected somewhat by adjusting the integration by a c
stant factorC1 that would be near 1. IfDS is a constant
density, using Eq.~2! in Eq. ~4!

Vnet5C1C0~Ns /V!E
V
Vf~r !dV. ~5!

The filament functionsA(X) and Vf(r ) play the role of
test functions, modeling the geometry of the network
greater detail for a more specific organ or system. In gene
we may assume thatA(X) is a monotonic function interpo
lating betweenA(0) and A(XS)5As ; therefore, using the
mean value theorem, the integral ofA(X) in Eq. ~3! can be
represented as

e

e
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VOLUME INTEGRATION OF FRACTAL DISTRIBUTION . . . PHYSICAL REVIEW E66, 041906 ~2002!
Vf~r !5@A~0!p11As~12p1!#XS~r !

5A~0!FA~p1!XS~r !, ~6!

where 0<p1<1, andFA(p1) is defined by Eq.~6!.
For the volumeV and the circulation distanceXS , spheri-

cal coordinatesr5(r ,u,f)5(r ,V) are chosen. An efficien
network would have a circulation distanceXS(r ) as small as
possible. The smallest possible value is the lengthr 5(r x

2

1r y
21r z

2)1/2, which XS(r ) cannot equal. Therefore a simp
method of successive approximations can be made with
powers ofr,

XS~r !5 f 1r u21 f 2r vx2~u,f!.r , ~7!

where the first term is the main contribution, andf 2 is a
small parameter. The surface ofV is modeled by the function
R(V)5R(u,f)5R0H(u,f), where 0,R0 , 0,H(u,f)
'1, and from Eqs.~5!–~7!

Vnet5C0C1FA~A0 /V!E
V
E

0

R~V!

XS~r !r 2dr dV, ~8!

where the volume V5**(*0
R(V)r 2dr)sinf du df

5(R0
3/3)*VH3(V)dV5(R0

3/3)G0 , andG0 is the angular in-
tegration. Similarly, using Eq.~7! in the integral overXS(r ),
*V *0

RXS(r )r 2dr dV 5 f 1 „R0
31u / (3 1 u)…*VH31u (V)dV

1 f 2„R0
31v/(31v)…*Vx2(V)H31v(V)dV. Using these last

results in Eq.~8!,

Vnet5C0C1FAA0@3G1~u! f 1R0
u/~31u!

13G2~v ! f 2R0
v/~31v !#, ~9!

where G1(u)5*VH31u(V)dV/G0 and G2(v)
5*Vx2(V)H31v(V)dV/G0 are the form factors remainin
from the angular integrations. This result forVnet also has a
first main term and a second term proportional to the sm
parameterf 2 . TheGk factors contain the contribution of th
organ form to the network volume. Taking now the appro
mation of only the first term (f 250), we see that the net
work volume is proportional to the long range circulatio
distanceXS(R0)5 f 1R0

u shown in Eq.~7!, that is,

Vnet153C0C1FAG1~u!A0XS~R0!/~31u!5C2A0XS~R0!,

~10!

where C2 is defined by Eq.~10!. This last equation is the
main result for the first order approximation of the netwo
volume.

III. APPLICATION TO ORGANS

Before the main allometric application is considered, it
important to note here that the network volume receives c
tributions from the organ external form or boundary throu
theGk form factors@Eq. ~9!#. As far as this author knows, th
network’s external boundary has not been part of previ
fractal theoretical analyses. A numerical simulation@10# of
distribution networks did show the qualitative effect on t
04190
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network of the overall exterior form of the network~the or-
gan form!. Clearly, this topic can be investigated farther wi
the help of numerical simulation methods.

A thorough correlation of the mathematical model of t
previous section with the experimental data is not yet p
sible due to the lack of experimental information on the c
culation distance function@Eq. ~7!#. I have seen only one
experimental reference that measures the circulation dista
in arborescent sponges@11#, where it is found apparently tha
the circulation distance follows mainly a power function
given in Eq.~7!. However, additional comparison in this ca
is not possible because arborescent sponges are low o
fractals where the space filling sites premise is not ap
cable. Although the data sets of the distribution networks
organs of animals are very incomplete, this is still a ve
desirable topic that we can discuss meaningfully. The m
point here is to show how future experimental data may
lect or improve the existing models.

Previous models of network volume@1–4# were based on
the condition of constant ratio self-similarity, where all th
ratiosNk11 /Nk , Ak11 /Ak , andLk11 /Lk are constant. These
are the ratios of the number of branches, cross section are
branches, and lengths of branches, respectively, which
constant in relation to the generation numberk50,1,2,...,s.
Under this condition, the network volume (Vnetp) is given by
Vnetp5CcrA0L0 , whereL0 is the length of the first and larg
est branch of the network andCcr depends on other param
eters. Also, under constant ratio self-similarity, the maximu
circulation distanceXmax5(0

sLk is proportional toL0 and
thereforeXmax andL0 will scale in the same way in relation
to organ volume. This last particular condition imposed
constant ratio self-similarity is unlikely to be valid in th
lung as we shall argue below. In the integration method
relation betweenXmax andL0 is mostly irrelevant in the de-
termination of the volume. Clearly,Xmax is directly related to
XS(R0). Therefore Eqs.~9! and ~10! represent a generaliza
tion applicable to a class of networks that may not be c
stant ratio self-similar, since no assumptions on branch
patterns have been made here.

We can use mammal allometric data for the trachea
lung to show some of the potential problems ofVnetp
5CcrA0L0 . The data are from Calder’s tables@7#, and are
also part of Tables I and II. Taking the trachea as the fi
stage of the lung@1# the cross section isA0}MB

0.78, and the
length is L0}MB

0.40 (MB5body mass!; therefore the bron-
chial networkVnetp}MB

1.18 which now has to be compared t
the scaling of the lung volume,V}MB

1.06. MB
1.18 and MB

1.06

are an unlikely combination of scaling in the same lun
Only actual allometric data on the bronchial tree could
solve this question.

From another perspective the trachea provides suppor
evidence for the Euclidean optimization argument appl
below. Here, the Euclidean scaling of a lengthL of a part of
an organ in relation to the same organ volumeV is defined as
L}V1/3. In this sense the trachea of mammals is altoget
Euclidean. Since the trachea volume isV}MB

1.18, then its
length L}V0.40/1.185V0.34, and its diameter D}A0

1/2

}V0.39/1.185V0.33. The same observation can be made of
6-3
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WALTON R. GUTIERREZ PHYSICAL REVIEW E66, 041906 ~2002!
trachea of birds (L}V0.36,D}V0.32). These data show tha
there are well defined Euclidean exponents in some circ
tory organs. Although the trachea has been used as the
stage of the bronchial tree@1#, from the point of view of the
integration method a better choice would be the first br
chus, but there are no allometric data on the first few sta
of the bronchial tree. Therefore, we continue to use the
chea as a surrogate for the first bronchus.

As shown by Doddset al. @5# the theoretical link between
optimal networks and constant ratio self-similarity rema
tentative and a rather difficult mathematical problem. Expe
mentally, constant ratio self-similarity may be a good a
proximation in the arterial tree of the lung@4#; however,
significant departure from constant ratio self-similarity h
been observed in the bronchial tree@9# and in arterial trees o
the heart@12#. To go beyond the restrictions imposed b
constant ratio self-similarity the following model is intro
duced. Based on Eq.~10!, it is proposed that under larg
variations of organ volumeV, such as from a mouse to
horse, Vnet5C2A0XS(R0) where XS(R0)}R0

u}Vu/3, A0

}Vb, and C2}Vz; thus Vnet}Vw, and w5b1z1u/3. Net-
works conforming to these last conditions are designa
here as globally self-similar. To apply global self-similari
to the kidney and lung, it is assumed as an approxima
thatC2 is invariant (z50). In the supplying networks of the
kidney and lung of mammals a good approximation isb
50.73, and the remarkable constancy ofb50.73 for cen-
trally supplied organs is shown in the relevant data displa
in Table I. The exponentb has other important implication
for the various scaling laws of organs, a topic that is m
fully discussed in@6#.

To determineu, the following optimality argument is ap
plied. The length ofXS(R0) is the length of a continuou
curve formed by the finite union of a set of smooth cur
segments. This curve goes from the center of the organ
point on its surface. The minimization of the length of th
curve is found in the fact that this curve does not loop
backstep and sidesteps only at a small angle. These des
tions identify a large set of curves. The length of a typic
curve in this set can be safely estimated to be proportiona
V1/3, or very nearly so, as shown by a more detailed ar
ment given in the Appendix. Therefore, from Eq.~7! we have
XS(R0)5 f 1R0}V1/3 ( f 1.1), setting u51. We find
Vnet}Vw5V1.06. To link the latter with allometric data, we
use the experimental scaling of organ volume to body m
(MB): V}MB

c ~for example,c50.85 for the kidney of
mammals!. In this way, Vnet}MB

wc5MB
1.06c . These results

are summarized in Table II. We may try to extend the
results to other blood distribution networks, but allomet
data are very minimal in this respect. Some organ netwo
of mammals and birds may have reached a degree of
metrical optimization described by the Euclidean scal
(V1/3) of XS(R0). Measurements ofXS for organs are not ye
available. The previous estimate@1# was XS}MB

0.25, which
in this model isXS}MB

uc/35MB
c/3 .

So far, this discussion and the data presented clearly s
that many of the exponents are not ‘‘universal’’ multiples
1/4 as previously suggested@1–3#. Rather, there is a mor
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diverse mixture of exponents applicable to specific cate
ries of animals and organs. Presumably the valueb50.73
would be modeled as a by-product of Kleiber’s law mod
@1–4#; however, this item remains controversial@5#. Theo-
retically speaking, the multiple values ofc represent a much
larger problem. The values ofc convey the relative size, an
need of a whole body, for each specific organ in groups
similar organisms.

Since we have found thatVnet}Vw5V1.06, this poses the
following question. IfV5Vnet1VTS and VTS}V @Eqs. ~1!
and~2!#, how is it thatVnet}Vw, with w.1? The answer is
based on the very good approximation for smallx and p
given by V'@pV11x1(12p)V12xy#/V(xxy/2)ln V, where y
5p/(12p), andVnet5pV11x. This formula can be derived
using the conventional expansionVH5eH ln V511H ln V
1(H ln V)2/21¯ . For example, ifx50.06, p51/7, then
y51/6, and V'(0.143V1.0610.857V0.99)/V0.0003 lnV. There
is a small error even if the term 1/V0.0003 lnV is approximated
by 1. By doing so, in the range ofV of 1065, there is a
maximum percent error ofV of 4%. In allometric data these
small deviations, such asV0.99560.005 or V(160.04), are es-
sentially undetectable.

APPENDIX

Here we make some estimates on the range of variatio
XS in relation to R0 and V. The type of curve of which
XS(R0) is the length can be approximated as a sequenc
straight segments with sidesteps at an average angleu. The
length would depend on this angle and on the degree
corrugation of the set of segments. Two simple models
shown in Fig. 2. From the model of Fig. 2~a! we obtain
XS(R0)54(Lk , R052(11cosu)(Lk , and therefore

f 1a5XS~R0!/R052/~11cosu!. ~A1!

From the model of Fig. 2~b! we obtainXS(R0)53(Lk , R0
5(112 cosu)(Lk , and therefore

f 1b5XS~R0!/R053/~112 cosu!. ~A2!

Now we make an estimate of the most likely range for t
angleu. Angles very near 0° or 90° are entirely unrealistic.
we choose the generous range of 30–70 ° we get a per

FIG. 2. Models of a line followed by a filament volume. Th
sum of allLk is XS(R0).
6-4
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variation for f 1a of 39% and forf 1b of 62%. Let us assume
a maximum percent variation off 1 of 60% and calculate the
impact on the exponentu of the scaling law~Sec. III!,
(V/V8)u/35XS(R0)/XS8(R0)5f 1R0 /f 18R085( f 1 / f 18)(V/V8)1/3.
The variation off 1 is represented byf 1 / f 185(1.6)61. A typi-
t

or

io

04190
cal variation ofV, for example, in mammals is of the orde
of V/V85106, that is, from shrew~'5 g! to elephant ('5
3106 g). Therefore we obtain 106u/35(1.6)61106/3, or u
5160.5 log(1.6)5160.1, that is, the parameteru has an
estimated maximum change of 10% around 1.
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