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Volume integration of fractal distribution networks
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An approach based on integral calculus methods is developed in order to determine the volume of a
distribution network with fractal characteristics. This approach introduces alternative useful techniques and
concepts to the study of the self-similarity of fractal distribution networks. The application to the allometry of
organs reveals other possible scaling for the bronchial tree and the kidney arterial tree of mammals.
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[. INTRODUCTION culation distance in the discussion of the model’s application
to the lung and kidneySec. Ill). A notable outcome of this
The work of Westet al. [1-3] made the connection be- application is the fact that Euclidean expone(i3 or its
tween fractal networks and many allometric scaling laws ofmultiples can coexist with “remarkable” exponengsuch as
organisms. Turcotteet al. [4] proposed the theory of 1/4 orits multiplegfor the same volume quantity. This result
Tokunaga[4] to be a better model of fractal branching of helps to remove a prevalent theoretical dichotomy between
distribution networks. A key aspect of these models is théhese two types of exponents that has been a persistent and
evaluation of the network volume based on particular definitroubling feature in most of the existing models of allometry
tions of network branching that restrict possible applicationd1,2,3,7. As a more unifying fractal feature of the network,
to a few organ networks of mammals. Recently, varioughe concept of global self-similarity is introduced, which pro-
modifications to these previous models have been suggest&ifles for a model that is in principle applicable to any organ
by Doddset al.[5] and GutierreZ6]. network. Although more data than currently available are
A set of experimentally accepted and simple characterisneeded to further test the concepts here presented, the exist-
tics of distribution networks of organ,7] is part of the ing relevant allometric data of organs lend preliminary sup-
basis of this approach to the network volume. Starting from d@ort to the proposed modéTables | and Il. Concurrently,
proposed general formula and using a method of successiiBe proposed model also yields other insights into what type
approximations, the volume of the network is calculated anaof data correlations would be of immediate benefit to inves-
lytically in terms of various geometric functions representingtigate (Sec. Ill).
some of the morphology of the network. The resulting net-
work volume in the first order of approximation is used to
develop a model of the scaling of the network volume that

can be applied to organisms. A theoretical goal of the inte- - aAn organ is represented by a voluieA large portion of

gration method is to describe distribution networks usingy, (~80% or mor¢, namedVs, is subdivided by a large
mathematical concepts that overcome the restrictive and lim-

iting self-similarity concepts so far usdd—4]. With this
method, no particular branching patterns are needed to deter-
mine the volume of the network, branching patterns that in
natural networks are usually much more complicated than
simple fractals. A key analytic concept is the subdivision of
the network volume into tiny filament voluméBig. 1). The
description of the filaments requires the introduction of vari-
ous functions and parameters that also describe a general
type of fractal network. In this analysis, the circulation dis-
tance function Xg) plays a significant role, a function that
should prove quite useful in the measurements of many types
of natural distribution networks. The integration method al-
lows the introduction of optimization considerations, differ-
ent from those so far implemented in existing modéls5]

such as, for example, the optimization of the circulation dis-
tance. A more complete account of the relation of the inte-
gration method to optimization conditions is beyond the
goals of this article, but a useful example of a simple opti-
mization consideration is carried out for the long range cir-

II. INTEGRATION OF NETWORK VOLUME

FIG. 1. Schematics of volum¥ showing the main variables.
The illustrated black filament has a volurkig and a lengthXg(r).
*Electronic address: waltong@touro.edu The total volume of all filaments ¥ .
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TABLE I. Determination ofb asA,xVPxME. A,, cross sec- order fractal, that is centrally supplied or drained, and that

tion area;V, organ volumeMg, body mass; ND, no data. services a complete volume through the sites. In the descrip-
tions of fractal distribution networks given below, the fol-

Ao cb? c? b lowing hypothesis is made: if all parameters and functions

Mammals are specified, the resulting network describes a statistical av-

erage of a large ensemble of networks, rather than a single

Trach 7 1. .78/1. 74 : : ' ) -
rachea 0.78 qung) 0.78/1.06=0 network, consistent with a set of design constraints. This
Renal artery 0.61 0.8&idney) 0.61/0.85=0.72 . S . . .
Bird interpretation is supported by numerical simulations of net-
Trach 0.70 0 gs 0.70/0.57=0.72 work designg8,3] and by network error tolerance consider-
rachea : ‘ Vl_ung) : : . ations [9]. Next, a general construction of the integration
Renal artery NB  0.91(kidney ND

method is shown, followed by a method of successive ap-
proximations for the relevant functions. If each site volume
Vs is equally supplied, then a filament volurve is defined

by linking an areaA,/N; of the initial branch cross section,
fo the cross section are®; connected tov,g (Fig. 1). For
example A, can be the cross section area of the renal artery
andAq the cross section area of the arteriole feeding a neph-
ron. The filament volum&; is not an element of volume of

averageh=0.73

8From[7], Tables 3-4, 5-3, and 5-6.
bif h=0.73 is constant, then this exponent can be predicted to b
0.66.

numberN; of very small and equal sites, each with a volume

Vs, that is,V1s/Ng=V5. These sites are serviced by a . . L
distribution network of volume/,;. There may be several the moving ﬂu'.d’ but an a_bs_tract way of su_bd|V|d|Mget:
The cross section area Wf is in general a variable function

networks in a particular organ. For example, in the lung there : . .

are the arterial and the bronchial networks. To simplify, butrepresented bﬁ(x)' The vanableﬁ is the partial Ien_gth of

without loss of generality, we shall assume there is one net:-hevf volume, in the range of 8 X<Xg(r), whereXs is the

work in the organ volume, otal length ofV, whlqh in turn depends on the spatial lo-
cation of V,g5 specified by the position vector

V=V, ot Vrs. (1) =(rx,ry,r;). The functionXg(r) is known as the circulation
distance. The volum¥; of this abstract filament is
For exampleV can represent the kidney volume aNd ()

the number of nephrons in the kidnéljuman k|c_iney,NS Vf(r)=f S AIAX, A(0)=Ag/N,, A(Xg=A..

~10°). The average volume of one nephron\isg and 0

V1s=NgV,gis the volume of all nephrons.V,,; may be the ©)]

volume of the arterial network supplying the nephrp@k A o )

useful concept is the density of the distribution of sizg ' herefore the volume of the distribution netwovk is

which, being nearly uniform, can be defined as Nq

DS: NSIVTS: CoNs/V, (2) Vnet:§l: Vf(ri): jvvf(r)DS(r)dV- (4)
whereV=CyV+1s. SinceVqgis a large part oV, it is as- A key step is the substitution of the summation of all the
sumed to be proportional t&, which is supported by allo- filament volumes/(r) by an integral using the general den-
metric datd[7]. sity Dg(r) of the sites which, in the case of a constant den-

The main goal of this section is to describe and quantifysity, is given by Eq(2). In the case of a general density we
the volume of a distribution network that looks like a high would have [ Dg(r)dV=N,. Clearly a uniform constant
density Dg throughoutV is only an approximation, since
TABLE Il. Scaling of network volume Vne). Vie*Mg"  there are no sites in the space occupied\by,. This ap-
=Mg®®*=Mg®; w=b+1/3. ND, no data. See Table | for initial proximation would introduce a small error, since the network
data. volume is a small part of the total volume. This error may be
corrected somewhat by adjusting the integration by a con-

Network Previous  Observed  Model proposed  giant factorC, that would be near 1. IDg is a constant
description model (expd 1.06 density, using Eq(2) in Eq. (4)
[1] ’
Mammals Vo= C1Co(N /V)f Vi(r)dV. (5)

Bronchial 1.0 1.06-1.78 1.12 net” =1=0 s v
Kidney arterial ND ND 0.90 i .

Birds The filament functionA(X) and V¢(r) play the role of
Bronchial ND 0.97—1.09 1.03 test functions, modeling the__geometry of the network in
Kidney arterial ND ND 0.96 greater detail for a more specific organ or system. In general,

we may assume tha(X) is a monotonic function interpo-
3Due to the lack of experimental data ¥y, the observed scaling lating betweenA(0) and A(Xs)=As; therefore, using the
of bronchial tree volume is estimated to be between lung volumdn€@n value theorem, the integral A¢X) in Eg. (3) can be
(low value and trachea voluméhigh valug [7]. represented as
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Vi(r)=[A(0)p;+Ag(1—p1)]Xs(r) network of the overall exterior form of the netwo(the or-
gan form). Clearly, this topic can be investigated farther with
=A(0)Fa(p)Xs(r), 6)  the help of numerical simulation methods.

A thorough correlation of the mathematical model of the
previous section with the experimental data is not yet pos-
sible due to the lack of experimental information on the cir-
culation distance functiofEqg. (7)]. | have seen only one
experimental reference that measures the circulation distance
in arborescent spongg%l], where it is found apparently that

h@e circulation distance follows mainly a power function as
given in Eq.(7). However, additional comparison in this case
is not possible because arborescent sponges are low order
Xo(N) =114 +1f,r'x,(6,4)>r, (7) fractals where the space filling sites premise is not appli-
cable. Although the data sets of the distribution networks of
where the first term is the main contribution, afiglis a  organs of animals are very incomplete, this is still a very
small parameter. The surface\dfis modeled by the function desirable topic that we can discuss meaningfully. The main
R(Q)=R(6,¢)=ReH(6,¢), where KRy, O0<H(6,¢) point here is to show how future experimental data may se-
~1, and from Eqs(5)—(7) lect or improve the existing models.
Previous models of network volunjé—4] were based on
the condition of constant ratio self-similarity, where all the
ratiosNy 1 /Ny, A1 /Ay, andL, 4 /L are constant. These
are the ratios of the number of branches, cross section area of
where the volume V=[[(/8®r2dr)sing dodg branches, and lengths of branches, respectively, which are
=(RY3)[ oH3(Q)dOQ = (R3/3)G,, andG is the angular in-  constant in relation to the generation numker0,1,2,..s.
tegration. Similarly, using Eq7) in the integral oveiXg(r), ~ Under this condition, the network volum¥ () is given by
fﬂfffxs(r)rzdr do = fl(R8+U/(3 + u))[oH3TU(Q)dO Vne,pb= CCrﬁ‘OLfO ,hwhereLO |i<S trrl(; Iedngth c:jfthe firsrt] and larg-
3+0 3+v ; est branch of the network a epends on other param-
T 1a(Ro /(34 0))[xp(HTH(Q)dQ. Using these last eters. Also, under constant ratigr sel?—similarity, the n?aximum

circulation distanceX =L is proportional toL, and

where O<p;=<1, andF,(p;) is defined by Eq(6).

For the volumeV and the circulation distancés, spheri-
cal coordinates =(r, 0, ¢)=(r,{)) are chosen. An efficient
network would have a circulation distan¥g(r) as small as
possible. The smallest possible value is the Ier‘rgﬁ{ri
+ri+12)Y2 which Xg(r) cannot equal. Therefore a simple
method of successive approximations can be made with t
powers ofr,

R(Q)
vnet:cochA(AO/V)ff Xg(r)radrdQ, (8
aJo

results in Eq(8),

Vie= CoC1F aAo[3G1(u)f1RY(3+u) thereforeX,,,.x andLy will scale in the same way in relation
to organ volume. This last particular condition imposed by
+3G,(v)f,Ry/(3+0)], (9)  constant ratio self-similarity is unlikely to be valid in the

lung as we shall argue below. In the integration method the
where  Gy(u)=[oH?*"(Q)dQ/G, and  Gy(v) relation betweer, . andL, is mostly irrelevant in the de-
=[oXx(Q)H3(Q)dQ/G, are the form factors remaining termination of the volume. Clearl¥ . is directly related to
from the angular integrations. This result i@, also has a Xg(Rp). Therefore Eqs(9) and (10) represent a generaliza-
first main term and a second term proportional to the smaltion applicable to a class of networks that may not be con-
parameterf,. The G, factors contain the contribution of the stant ratio self-similar, since no assumptions on branching
organ form to the network volume. Taking now the approxi-patterns have been made here.
mation of only the first termf(,=0), we see that the net- We can use mammal allometric data for the trachea and
work volume is proportional to the long range circulation lung to show some of the potential problems Wy

distanceXg(Ry) = f1Rg shown in Eq.(7), that is, =CAoLg. The data are from Calder’s tabl€g|, and are
also part of Tables | and Il. Taking the trachea as the first
Viet1=3CoC1FAG1(U)ApXs(Ro)/(3+u)=CrA0Xs(Ry), stage of the lung1] the cross section i8,=M5’®, and the

(10  length isLo=Mg* (Mg=body mas therefore the bron-
chial networkV e, M g*® which now has to be compared to
 the scaling of the lung volume/xMg*. Mg*® and Mg
are an unlikely combination of scaling in the same lungs.
Only actual allometric data on the bronchial tree could re-
solve this question.
lll. APPLICATION TO ORGANS From another perspective the trachea provides supporting
Before the main allometric application is considered, it isevidence for the Euclidean optimization argument applied
important to note here that the network volume receives conbelow. Here, the Euclidean scaling of a lengtof a part of
tributions from the organ external form or boundary throughan organ in relation to the same organ voluvhes defined as
the G, form factors[Eq. (9)]. As far as this author knows, the LoV, In this sense the trachea of mammals is altogether
network’s external boundary has not been part of previouguclidean. Since the trachea volumeViss Mg, then its
fractal theoretical analyses. A numerical simulatfd@] of  length Loc\V040118\034  and jts diameter DxA}?
distribution networks did show the qualitative effect on the V939118033 The same observation can be made of the

where C, is defined by Eq(10). This last equation is the
main result for the first order approximation of the networ
volume.
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trachea of birds [(=V°*,DxV®%). These data show that (4 ‘o
there are well defined Euclidean exponents in some circula- t, Yo ,
tory organs. Although the trachea has been used as the firs L1 [0 L1 . Ae.Ls/‘i%‘“ o
stage of the bronchial trdd], from the point of view of the T LN LWde . '
integration method a better choice would be the first bron- ' B Yt
chus, but there are no allometric data on the first few stages K
of the bronchial tree. Therefore, we continue to use the tra- (b)
chea as a surrogate for the first bronchus. L X8 v

As shown by Doddst al.[5] the theoretical link between L1 A® L La/AQ. .. B
optimal networks and constant ratio self-similarity remains LX 0 L 46 e
tentative and a rather difficult mathematical problem. Experi- B L.
mentally, constant ratio self-similarity may be a good ap- )
proximation in the arterial tree of the lung]; however, FIG. 2. Models of a line followed by a filament volume. The
significant departure from constant ratio self-similarity hassum of allL is Xs(Ro).
been observed in the bronchial t{&3 and in arterial trees of
the heart[12]. To go beyond the restrictions imposed by diverse mixture of exponents applicable to specific catego-
constant ratio self-similarity the following model is intro- ries of animals and organs. Presumably the vdie€0.73
duced. Based on Eq10), it is proposed that under large would be modeled as a by-product of Kleiber’s law models
variations of organ volum&/, such as from a mouse to a [1—4]; however, this item remains controversfal]. Theo-
horse, Vie=CoAoXs(Ro) Where Xg(Rg)xRYyxcVU3 A,  retically speaking, the multiple values ofrepresent a much
«VP, and C,xVZ thus V. VY, andw=b+z+u/3. Net- larger problem. The values ofconvey t_h_e relative_ size, and
works conforming to these last conditions are designate@€ed of a whole body, for each specific organ in groups of
here as globally self-similar. To apply global self-similarity Similar organisms.
to the kidney and lung, it is assumed as an approximation Since we have found that,eecV*"'=V"%, this poses the
thatC, is invariant g=0). In the supplying networks of the following question. If V=Vt Vs and VysxV [Egs. (1)
kidney and lung of mammals a good approximationbis and(2)], how is it thatV,ee< V", with w>1? The answer is
=0.73, and the remarkable constancybot0.73 for cen- based on the very good approximation for smaland p
trally supplied organs is shown in the relevant data displaye@iven by V=[pV*"*+(1—p)V!Y]/v¥2V where y
in Table I. The exponert has other important implications =P/(1—p), andV,e=pV***. This formula can be derived
for the various scaling laws of organs, a topic that is moreusing the conventional expansiow"=e""V=1+HInV
fully discussed irf{6]. +(HInV)%2+---. For example, ifx=0.06, p=1/7, then

To determineu, the following optimality argument is ap- y=1/6, and V~(0.143/1%+0.853/0:99/y0-00031"V " There
plied. The length ofXg(Ro) is the length of a continuous is a small error even if the term\19-°°%'"V is approximated
curve formed by the finite union of a set of smooth curveby 1. By doing so, in the range of of 10°°, there is a
segments. This curve goes from the center of the organ to maximum percent error df of 4%. In allometric data these
point on its surface. The minimization of the length of this small deviations, such ag?99%%-0% or \/(1+0.04), are es-
curve is found in the fact that this curve does not loop orsentially undetectable.
backstep and sidesteps only at a small angle. These descrip-
tions ifjentjfy a large set of curves. The length of a t.ypical APPENDIX
curve in this set can be safely estimated to be proportional to
VY2 or very nearly so, as shown by a more detailed argu- Here we make some estimates on the range of variation of
ment given in the Appendix. Therefore, from E@) we have Xs in relation to Ry and V. The type of curve of which
Xs(Rp)=fRox VY (f;>1), setting u=1. We find Xs(Ro) is the length can be approximated as a sequence of
Vs VW=V10 To |ink the latter with allometric data, we Straight segments with sidesteps at an average ahglae
use the experimental scaling of organ volume to body mas€ngth would depend on this angle and on the degree of
(Mg): VxM§ (for example,c=0.85 for the kidney of corrugation _of the set of segments. Two_ simple mode_ls are
mammal3. In this way, V,eeMY=ML%  These results shown in Fig. 2. From the model of Fig.(& we obtain

are summarized in Table Il. We may try to extend these S(Ro) =4ZLk, Ry=2(1+Cos)ZLy, and therefore
results to other blood distribution networks, but allometric
S . . ’ = = + .

data are very minimal in this respect. Some organ networks F1a=Xs(Ro)/Ry=2/(1+cos6) (AL)
of m_ammals_ a_nd _b|rds may have reached a _degree of 9€@1om the model of Fig. ®) we obtainX(Ry) =35L,, Ry
metrical optimization described by the Euclidean scallng:(lJr2 cos)SL,, and therefore

1/ 'e]
(VY3 of X5(Ry). Measurements Of s for organs are not yet
available. The previous estimafté] was Xs>=M22°, which f,,=Xo(Ro)/Ro=3/(1+2 cosh). (A2)
in this model isXsxME#3=M&3,

So far, this discussion and the data presented clearly show Now we make an estimate of the most likely range for the
that many of the exponents are not “universal” multiples of angled. Angles very near 0° or 90° are entirely unrealistic. If
1/4 as previously suggestéd—3]. Rather, there is a more we choose the generous range of 30—70 ° we get a percent
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variation forf,, of 39% and forf,, of 62%. Let us assume
a maximum percent variation ¢f of 60% and calculate the
impact on the exponent of the scaling law(Sec. llI),
(VIV")UB=Xg(Rg)/X&(Rg) =f1Rg 1R, = (f1/F1) (VIV") 3.
The variation off; is represented b, /= (1.6)"1. Atypi-

PHYSICAL REVIEW E66, 041906 (2002

cal variation ofV, for example, in mammals is of the order
of V/V' =10, that is, from shrew~5 g) to elephant £5

x 10° g). Therefore we obtain £8°=(1.6)"110f"3 or u
=1+0.5log(1.6)=1=*0.1, that is, the parameter has an
estimated maximum change of 10% around 1.
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